
1

International Journal of Recent Research and Review, Vol. IX, Issue 4, December 2016

ISSN 2277 – 8322

On the Performance of Firefly Algorithm in Software Reliability

Modeling
Najla Akram AL-Saati, Marrwa Abd-AlKareem Alabajee

Software Engineering Dept., University of Mosul, Iraq

Abstract - Reliability usually covers all parts of the

system taking into account hardware, software,

interfaces, operators and procedures. Whereas Software

Reliability resembles a very important attribute of

software quality, where the reliability of a component or

system is understood and predicted prior to its

implementation, this is called Reliability Modeling.

Software Reliability is usually measured using software

reliability growth models (SRGMs). In this paper the

Firefly algorithm is evaluated for estimating the

parameters of software reliability growth models. Based

on real software failure data, the experiments are

performed and the results are compared with Particle

Swarm Optimization (PSO), Ant Colony Optimization

(ACO) and extended ACO (Ex-ACO). Experimental

results show that FA is effective for estimating the

parameters of SRGMs, and it has outperformed both

PSO and ACO, except for some few cases where it was

outperformed by Ex-ACO.

Keywords- Parameter Estimation, Software Reliability

Growth Models, Swarm Search, Firefly Algorithm,

Particle Swarm Optimization, ACO, Ex-ACO

I. INTRODUCTION

The use of computers has spread so wide that it has

become essential in everyday life activities, such as

banking, industry, trade, small and even large systems

like water distribution and navigation systems, etc.

Computers are controlling critical applications in

hospitals, controlling traffic and airplane flights,

where a slightest failure can lead to a disaster and can

cost human lives.

Constructing reliable software can be a very

challenging problem. Issues such as Schedule

Pressure, limited Resource, or vague requirements can

all severely affect reliability. The development of

reliable software is particularly hard when there is

interdependence among software modules as noticed

in much of the existing software [1].

Software reliability can define software

quality, as it refers to "how well software meets its

requirements" and also "the probability of failure free

operation for the specified period of time in a

specified environment" [2]. Several models have been

established through the estimation of initial fault

number and their effect on software operations, and

also to predict the reliability of software [3].

A software reliability model can be defined as

“the mathematical relation found between time

consumed by software testing and the accumulative

amount of errors discovered”[4].

Usually, there are two types of software

reliability models [1]:

 Predicting software reliability from design

parameters, this type of models is usually called

"Defect Density Models”.

 Predicting software reliability from test data, this

type of models is usually called "Software

Reliability Growth Models".

Many Software Reliability Growth Models

(SRGMs) have been proposed since 1970, and were

used for estimating the reliability growth of software

products. SRGMs can be employed to show the

behavior of detected failures characterized of software

by either times of failures or by the number of failures

at fixed times [5].

In general, the parameters of SRGMs are

unknown and are estimated according to the collected

failure data. The most popular estimation techniques

used are Maximum Likelihood Estimation (MLE) and

Least Squares Estimation (LSE). Actually, MLE and

LSE include the property of probability theory and

statistical analysis. Thus, this could enforce certain

restrictions on the process of parameter estimation for

SRGMs[5].

Recent research has been encountering a

massive progress regarding the application of

2

Evolutionary Computational techniques in Software

Engineering, especially in discovering good-enough

solutions to problems such as prediction, estimation

and optimization [6].

In this work the Firefly Algorithm (FA), one

of the Swarm Intelligent techniques, is to be used for

estimating the parameters of the SRGMs. This is done

with the use of real failure data to demonstrate the

performance of the employed algorithm. Results will

be compared with those obtained using three models,

the Exponential (Goel-Okumoto), S-shaped and

Power models, whose parameters were estimated

using Particle Swarm Optimization (PSO) [7]. In

addition the results are to be compared with those

achieved by Ant Colony Optimization (ACO) and

extended ACO [8] using the same previously

mentioned models along with the M-O model.

II. RELATED WORK
Models of SRGMs were considered for studying and

analysis through the literature for many years and here

are some of these studies:

 2003:Xie, Hong, and Wohlin[9], suggested a

method to estimate model parameters using the

available information of earlier project releases for

early prediction of reliability.

 2004: Okamura, Murayama, and Dohi[10],

introduced a unified parameter estimation method

established on the EM (Expectation-Maximization)

principle for discrete software reliability models.

 2005: Huang [11] presented a performance analysis

of SRGMs with testing effort and change-point.

 2006:Sheta [7]employed PSO to solve the parameter

estimation problem for the exponential, power and

S-Shaped models.

 2007: Huang, Kuo, and Lyu[12], proposed new

models by integrating the logistic testing-effort

function into both exponential-type, and S-shaped

models, parameters for the models are estimated

using Maximum Likelihood Estimation (MLE).

 2008: Hsu, Huang, and Chen [13], recommended a

modified genetic algorithm with calibrating fitness

functions, weighted bit mutation, and rebuilding

mechanism for the parameter estimation of software

reliability growth models (SRGMs).

 2009:Yadav and Khan[14], presented taxonomy for

software reliability models, the models under review

reflect either infinite or finite number of failures. All

exponential distribution models reflect finite

failures. In contrast, logarithmic distribution based

model reflect infinite failures.

 2010: Satya Prasad, Naga Raju, and Kantam [15],

proposed anew model that combine both imperfect

debugging and change-point problems into SRGM.

 2011: Gupta, Choudhary, and Saxena [16], made an

analysis for software reliability using Yamada S-

shaped model and generalized it by including

imperfect debugging and time delay function.

 2012: Shanmugam and Florence[3] made a

comparison among parameter best estimation

methods and pointed that that ACO was the best. In

the same year, they made an improvement [8] on

ACO and compared it to their previous work.

 2013: Anjum, Haque, and Ahmad [17], developed a

computational methodology based on weighted

criteria to analyze the performance for various

NHPP models. Also in 2013, Al-Saati and Alabaje

[6] investigated the use of Cuckoo Search in

estimating the parameters for a number of SRGMs.

 2014: Srinivasa Rao [18], proposed software

prediction models based on software reliability to

improve the failure data, it was considered as a

Non-Homogeneous based exponential distribution.

 2015: Kaur[19] used a CASRE tool to measure the

reliability of software using some of the models.

Also that year, Wayne and Modarres [20] presented

a new method for projecting the reliability growth

of a complex continuously operating system. The

model tolerates arbitrary corrective action strategies.

III. SOFTWARE RELIABILITY GROWTH

MODELS (SRGMs)

A. Definitions of SRGMs

Throughout the last passing decades, various software

reliability growth models (SRGM) have been

established to be used for evaluating the status of

development in the course of testing [21].

Software reliability growth models (SRGM)

define the overall form of the dependence of the

failure process on the basic factors that affect it:

 Fault Introduction,

 Fault Removal, and

 The Operational Environment.

3

In general, failure rates of software system decreases

with time after being forced by both Fault

Identification and Removal. The main purpose of a

software reliability model is to predict failure actions

expected to be experienced when the software is in

operation. Such a predicted behavior varies quickly

and can be observed throughout the test period of the

program [22].As faults are detected and repaired,

Models of SRGM become important in estimating the

enhancement of software reliability [23].

Software reliability modeling includes

mathematical and statistical functions that employ

quite a few computational steps. The parameters of

the Models’ Equations are estimated with techniques

such as least squares fit or maximum likelihood

estimation [24]. The fact is that each model is able to

provide good result for a certain data set; however no

model can provide such results for all data sets [17].

In SRGM, reliability can grow through testing

time t, which is typically measured in terms of the

CPU execution time in use, or the amount of man-

hours or days. This growth is commonly identified

either in terms of failure intensityλ(t), or in terms of

the mean value function μ(t)[25]. A number of

parameters must be estimated by the failure data

collected to calculate the mean value function [9].In

general SRGMs encounter some major challenges [2]:

 Software testers don’t usually follow the

operational profile in testing the software, thus

what is seen through software testing may not be

straightly extensible for operational use.

 Once the number of failures collected is limited, it

becomes difficult to carry out statistically

expressive reliability predictions.

 Some assumptions of SRGM are not realistic.

Terms used in defining the models in the next

subsections are given in TABLE I.

TABLE I

Terms used for defining SRGMs

Term Definition

𝜇(𝑡) Denotes the mean failure function, i.e., the

expected number of failures observed over a

period of time t.

𝜆(𝑡) Is the failure intensity function, i.e., failure

rate

a The initial estimate of the total failure

recovered at the end of the testing process.

b Represents the ratio between the initial failure

intensity 𝜆0 and total failure.

NHPP The Non Homogenous Poisson Process:

provides probability that the number of

failures at a time t will have a particular value.

B. Classification of SRGMs

SRGMs can be classified in to two types [26]:

 Models described in terms of the failure times of the

process, most popular known class models of this

type is the class of the General Order Statistics

(GOS) models , it is assumed that the unknown

initial number of faults (N) in a software system be

unknown but fixed.

 Models described in terms of the number of

observed failures, the most popular class models of

this type, is the class of non-homogeneous Poisson

process (NHPP) models. It is assumed that the

unknown initial number of faults (N) in a software

system be a random variable following a Poisson

distribution.

In this work, models from the second type are used.

C. General NHPP Model

One of the most commonly studied SRGMs is the

Non-Homogeneous Poisson Process (NHPP), and

because of its mathematical tractability and wide

applicability, it became one of the main classes of the

present SRGMs [27]. NHPP models are also called

fault counting models which can either be finite or

infinite models, according o how they are stated [24].

NHPP models are considered to be very

advantageous in the analysis of reliability, particularly

in repairable systems. These models can be used for

both software and hardware, and for combined

systems, this is mainly due to the fact that hardware

systems are usually repairable, and software

debugging is also a repair process [28].

The NHPP based models are considered to be

simple, convenient and compatible. It is essential, in

these models, to specify a suitable mean value

function to represent the probable number of failures

occurred up to a precise time point. Being NHPP

based SRGMs; they can be successful in practical

software reliability engineering [29].The number of

4

detected failures up to time (t) can be modeled as a

pure birth counting process (N(t))
t≥0

[4].

It is assumed that the number of software

failures during non-overlapping time intervals don’t

have any impact each other. That means, for any finite

collection of times t1 < t2 < ⋯ < tn the “n” random

variables {N(t2) − N(t1)}, …. { N(tn) − N(tn−1)} are

independent. Therefore, the counting process {N (t),

t>0} has independent increments [29].

If the expected number of software failuresis

represented by μ(t)in time (t), then the mean value

function μ(t) is finite valued, non-decreasing, non-

negative and restricted with the boundary conditions.

AssumingN(t) is known to have a Poisson probability

mass function with parameters μ(t) as in Eq.(1), then

N(t) is called NHPP. Hence the stochastic behavior of

software failure phenomena can be described through

the N(t) process [29].

P[N(t) = n] = e−(μ(t)) (μ(t))
n

n!
 ………….…….(1)

Where n=0, 1, 2, …,∞

D. Basic Assumptions of NHPP-Models

The followings are some of the basic

assumptions for NHPP models [24]:

 A Software system is subject to failure during

execution caused by faults remaining in the system.

 The number of faults detected at any time is

proportional to the remaining number of faults in

the software.

 Failure rate of the software is equally affected by

faults remaining in the software.

 On a failure, repair efforts starts and fault causing

failure is removed with certainty.

 All faults are mutually independent from a failure

detection point of view.

E. NHPP-Models Used in this Work

A number of models is considered in this

work, mainly those that are used more often and

commonly in the literature. TABLE II shows the

employed models, refer to [6] for more details.

TABLE II

Employed NHPP Models

SRGMs 𝜇(𝑡) λ(t)

Exponential Model

(Goel-Okumoto G-O)

μ(t) = a(1 − e−bt) 𝑎𝑏𝑒−𝑏𝑡

The Power Model

(POW)

𝜇(𝑡) = 𝑎𝑡𝑏 𝑎𝑏𝑡𝑒𝑏−1

Yamada Delayed S-

Shaped Model (DSS)

𝜇(𝑡)

= 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡)

ab2te−bt

Musa-Okumoto

Logarithmic Model

(M-O)

𝜇(𝑡) = 𝑎 ∗ ln (1 + 𝑏𝑡) ab

(1 + bt)

IV. SWARM INTELLIGENCE

A. Firefly Algorithm

Firefly Algorithm(FA) is one of the swarm

intelligence optimization methods proposed by Xin-

She Yang at University of Cambridge in 2007[30-

31].FA is inspired by fireflies’ behavior in nature, and

although this algorithm has many similarities with

other algorithms which are based on the so-called

swarm intelligence, such as the famous Particle

Swarm Optimization (PSO), Artificial Bee Colony

optimization (ABC), and Bacterial Foraging (BFA)

algorithms, it is indeed much simpler in both concept

and implementation. Also, according to recent

bibliography, it is very efficient and can outperform

conventional algorithms like genetic algorithms for

solving several optimization problems [32].

This algorithm is inspired by social behavior

of fireflies and the phenomenon of Bioluminescent

Communication [30]. Most of the fireflies produce

short and rhythmic flashes; their flashing light is

generated by a process of bioluminescence and may

serve as an element of engagement rituals or warning

signals [33].

B. Behavior of Fireflies

Fireflies usually release a flashing light in an amazing

phenomenon and they sparkle in the atmosphere of the

tropical and temperate regions. There exist about two

thousand species of firefly; most of them produce

short and rhythmic flashes. The pattern of flashes

produced by fireflies is often unique for a particular

species. A process of bioluminescence is responsible

for the production of such a flashing light, and the real

5

functions of those signaling systems are still in

assessment. Nevertheless, two fundamental functions

of these flashes are:

 Attracting mating partners (communication),

 Attracting potential prey.

Moreover, flashing may also function as a

protective and defensive warning mechanism. The

rhythmic flash, flashing rate and amount of time, all

formulate part of the signal system that brings both

sexes together. [34].

Females usually respond to a unique pattern

of flashing of males in the same species, whereas in

some species, females are able to mimic the mating

flashing pattern of other species in order to bait and

eat males who might mistake the flashes as a potential

appropriate mate [35].

As a fact, the intensity of light at a definite

distance (r) from the light source adapts to the inverse

square law. To be precise, the light intensity (I)

decrease as the distance (r) increases in terms of (I α

1/r2). Furthermore, the light keeps being absorbed by

the air and becomes weaker as the distance increases.

When these two factors are combined, most fireflies

become visible at a limited distance, typically to a few

hundred meters at night, which is fairly sufficient for

fireflies to communicate with each other [36].

C. Concept

To construct a firefly-inspired algorithm, some of the

flashing characteristics of fireflies have to be

idealized. In accordance, these flashing characteristics

can be summarized using the following three rules

36]:

 All fireflies are unisex; therefore each firefly is

attracted to other fireflies irrespective of their sex.

 Attractiveness and brightness are proportional to

each other, so for any two flashing fireflies, the

less bright one will move towards the brighter

one. Attractiveness and brightness both decrease

as their distance increases. If there is no one

brighter than other firefly, it will move randomly.

 The firefly’s brightness is determined by the view

of the objective function.

According to these three rules, the basic steps

of the firefly algorithm (FA) can be summarized as

the pseudo code shown in Fig. 1 [34].

Fig.1 Pseudo code of the firefly algorithm (FA)

D. Light Intensity and Attractiveness

The landscape of the objective function controls the

brightness of a firefly. As a maximization problem,

the brightness can simply be proportional to the value

of the objective function [35].

Let the brightness (I) of a firefly at a specific

position (x) be considered as a simple case for

maximum optimization problem, it can be stated as

I(x) α f(x). On the other hand, the attractiveness (β) is

relative; it should be realized or judged by the other

fireflies. This way, it will differ with the distance (rij)

between firefly (i) and firefly (j). Furthermore, the

intensity of light decreases with the distance from its

source, it is also absorbed by the media, so the

attractiveness should be allowed to vary with the

degree of absorption [34].

In Firefly algorithm, the attractiveness function 𝛽(𝑟)

of a firefly is a monotonically decreasing function as

stated in Eq. (2) [32]

𝛽(𝑟) = 𝛽0 𝑒
−𝛾𝑟𝑚

 , (𝑚 ≥ 1) …..……….(2)

Where,

r: is the distance between two fireflies.

𝛽0 :is the attractiveness at (r = 0).

𝛾:is the absorption coefficient controlling the decrease

of the light intensity.

E. Distance

The distance concerning any two fireflies (i) and (j) at

locations (xi) and (xj), respectively is the Cartesian

distance, and can be defined as in Eq. (3) [36]

Objective function 𝑓(𝑥), 𝑥 = (𝑥1, … … , 𝑥𝑑)𝑇

Generate initial population of fireflies 𝑥𝑖 (𝑖 = 1,2, … . . 𝑛)

Light intensity 𝐼𝑖 at 𝑥𝑖 is determined by 𝑓(𝑥𝑖)

Define light absorption coefficient 𝛾

while (t <MaxGeneration)

for i = 1 : n all n fireflies

for j = 1 : i all n fireflies

if (𝐼𝑗>𝐼𝑖), Move firefly i towards j in d-dimension

end if

Attractiveness varies with distance 𝑟 via 𝑒𝑥𝑝 [−𝛾𝑟]
Evaluate new solutions and update light intensity

end for j

end for i

Rank the fireflies and find the current best

end while

Post process results and visualization

6

𝑟𝑖,𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖=√∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1 …………….(3)

Where

xi,k : is the kth component of the spatial coordinate (xi)

of the ith firefly,

d: is the number of dimensions, in a 2D case, the

distance is given as in Eq. (4) [36]

𝑟𝑖𝑗 = √(𝑥𝑖1 − 𝑥𝑗1)
2

+ (𝑥𝑖2 − 𝑥𝑗2)
2

 ……….…(4)

F. Movement

The movement of a firefly (i) attracted to

another more attractive firefly (j) is computed using

the attraction Eq.(4) where (m=2) multiplied by

difference between xi and xj with α being the

randomization parameter. This is shown in Eq. (5)

𝑥𝑖 = 𝑥𝑖 + 𝛽0 𝑒
−𝛾𝑟𝑖,𝑗

2

∗ (𝑥𝑗 − 𝑥𝑖) + 𝛼 ∗ (𝑟𝑎𝑛𝑑 −
1

2
)

(5)

Where,

xi is the current position of a firefly,

α is the randomization parameter.

rand is a random number generator uniformly

distributed in the range of [0, 1].

For most cases in the implementation, 𝛽0 = 1 and

α= [0, 1]. Furthermore, the randomization term can

effortlessly be extended to a normal distribution N (0,

1) or any other distribution [35].

V. TESTS AND RESULTS

A. Experimental Data and Parameter Settings

To test the efficiency of the Firefly algorithm when

applied to SRGMs, comparisons are made with

previous results obtained using PSO (employing three

models) on datasets: Data1, Data2, and Data3 [7], and

also compared with results obtained using ACO, and

EX-ACO (employing four models) on Musa Data sets

taken from the Data Analysis Center for Software’s

Reliability Data set [37] for Project2, Project3, and

Project4. TABLE III shows the settings of the

parameters for the FA used in this paper.

TABLE III

Parameter Settings for Firefly algorithm

Parameter Value

Lower and Upper bounds for (a) [0.00001-2000]

Lower and Upper bounds for (b) [0.00001 – 1]

Number of fireflies (𝑛) 25

number of dimensions (d) 2

the maximum number of generations 100

randomization parameter (α) 0.01

initial attractiveness (β0) 1

absorption coefficient (γ) 1

B. Evaluation Criterion

In this work, and for comparison reasons, two type of

evaluation criteria are used to measure the

performance of the algorithm based models; the first

is the Root Mean Square Error-RMSE given in Eq.

(6). This measure is used here with (Data1, Data2, and

Data3) datasets. The second measure is the Euclidean

Distance-ED that was used by Shanmugam and

Florence [8], its formulation is shown in Eq. (7) and is

used with (Project2, Project3, and Project4) datasets.

RMSE = √
1

N
∑ (mi − μi)

2N
i=1 …….…… (6)

Where,

N: is the number of measurements used for estimating

model parameters,

mi:is the actual failure number.

μi: is the predicted failure number.

𝐸𝐷 = √∑ (mi − μi)
2N

i=1 …………(7)

Where,

N, mi , μi is the same as in previous equation (Eq. (6)).

C. Comparisons using RMSE

The Firefly algorithm is trained and tested using

(70%, 30%) training and testing percentages

respectively, the same percentages were used by Sheta

[7] for Data1, Data2, and Data3, the results are then

compared with those obtained using PSO [7] for

(EXP, POW and DSS) Models. TABLES IV, V and

VI show the results of FA and the comparisons with

PSO for Data1, Data2 and Data3 using RMSE and

testing 30%.Results show that FA outperformed PSO

for all models in Data1, Data2, and Data3. Best results

are shown in bold.

7

TABLE IV

Comparison of FA and PSO using RMSE (Data1)

PSO FA

119.4374 15.9041 EXP(G-O)

152.9372 43.0197 POW

26.3015 16.2004 DSS

TABLE V

Comparison of FA and PSO using RMSE (Data2)

PSO FA

80.8963 22.9082 EXP(G-O)

149.9684 81.5982 POW

17.0638 6.9173 DSS

TABLE VI

Comparison ofFA and PSO using RMSE (Data3)

PSO FA

13.6094 10.7637 EXP(G-O)

14.0524 12.6660 POW

47.4036 11.8653 DSS

D. Comparisons using Euclidean Distance

FA was also trained using other data sets and other

training percentages, the results were compared with

those achieved using ACO and extended ACO

[8]which employed the same datasets and (100%) of

data for each set for training for the (G-O, POW, DS

S, and M-O) models for Project2, Project3, and

Project4. The comparison was done using Euclidean

Distance. TABLES VII,VIII and IX show the

comparison among FA, ACO, and Ex-ACO.

Results for Project2 in TABLE VII show that

Ex-ACO outperformed both FA and ACO for all

models. Results are also depicted by Fig .2.

TABLE VII

Comparison among FA, ACO and Ex-ACO (Project2)

Ex-ACO ACO FA

28.5891 60.0371 42.7901 EXP(G-O)

34.0521 52.8854 46.3033 POW

33.0461 52.8854 42.5206 DSS

17.359 26.0385 42.2256 M-O

Fig. 2 Differences among Search Algorithms (Project2)

Results of Project3 in TABLE VIII, on the other hand,

showed that FA was better than both ACO and Ex-

ACO for all models. Fig. 3 illustrates this.

TABLE VIII

Comparison among FA, ACO and Ex-ACO (Project3)

Ex-ACO ACO FA

34.0709 71.5489 30.4631 EXP(G-O)

47.5814 57.5801 15.3948 POW

48.4914 57.5801 30.7734 DSS

24.126 36.1891 20.5183 M-O

Fig .3 Differences among Search Algorithms (Project3)

Results of Project4 showed in TABLE IX and

demonstrated in Fig.4 also indicated that FA

performed better than all others except for the M-O

model, where Ex-ACO performed better than all.

0

20

40

60

80

EXP(G-O) POW DSS
M-O

FA ACO Ex-ACO

0

20

40

60

80

EXP(G-O) POW DSS
M-O

FA ACO Ex-ACO

8

TABLE IX

Comparison among FA, ACO and Ex-ACO (Project4)

Ex-ACO ACO FA

35.0007 71.4015 25.7488 EXP(G-O)

34.2645 53.2234 28.5832 POW

35.2635 53.2234 25.6125 DSS

22.1152 33.1728 26.4196 M-O

Fig. 4 Differences among Search Algorithms (Project4)

VI. CONCLUSIONS

In this work, Firefly algorithm was used to estimate

the parameters of Software Reliability Growth

Models. Some numerical examples based on a real

failure data were used; experimental results showed

that FA was effective for estimating the parameters of

SRGMs. The comparison was carried out with PSO,

ACO and Ex-ACO, where FA outperformed all

others, apart from some cases where Ex-ACO was

better.

VII. REFERENCES

[1] A. Wood, "Software Reliability Growth Models",

Tandem Tech., Technical Report, Vol. 96.1, Tandem

Computers Inc., Corporate Information Center,

Cupertino Calif., Part Number 130056. 1996.

[2] T.H. Sheakh, V. Singh, "Taxonomical Study of

Software Reliability Growth Models", International

Journal of Scientific and Research Publications,

ISSN 2250-3153, Vol.2, Issue.5, pp: 1-3. 2012.

[3] L.Shanmugam, L.Florence, "A Comparison of

Parameter Best Estimation Method for Software

Reliability Models", International Journal of

Software Engineering & Applications (IJSEA),

Vol.3, No.5, pp: 91-102. 2012.

[4] P. H.A. Meyfroyt, "Parameter Estimation for

Software Reliability Models", Thesis, Eindhoven:

Technische Universiteit Eindhoven, pp: 1-65. 2012.

[5] C.J. Hsu, and C.Y. Huang, “A Study on the

Applicability of Modified Genetic Algorithms for the

Parameter Estimation of Software Reliability

Modeling", IEEE 34th Annual Computer Software

and Applications Conference 2010.

[6] N.A.AL-Saati,M. A.Alabaje, "The Use of Cuckoo

Search in Estimating the Parameters of Software

Reliability Growth Models",International Journal of

Computer Science and Information Security(IJCSIS),

Vol.11, No.6, June 2013.

[7] A.Sheta, "Reliability Growth Modeling for Software

Fault Detection Using Particle Swarm Optimization",

IEEE Congress on Evolutionary Computation

Sheraton Vancouver Wall Centre Hotel, Vancouver,

BC, Canada 2006, pp: 3071- 3078.

[8] L.Shanmugam, L.Florence, "An Improved ACO

Technique for Parameter Estimation", European

Journal of Scientific Research, ISSN 1450-216X ,

Vol. 89, No.1, pp:101-108. 2012.

[9] M.Xie, G.Y.Hong,C.Wohlin,"Modeling and Analysis

of Software System Reliability", In Case Studies on

Reliability and Maintenance, Published by John

Wiley and Sons, Inc., Hoboken, New Jersey, Online

ISBN: 9780471393009, pp: 233–250. 2003

[10] H.Okamura, A. Murayama,T.Dohi, "EM algorithm

for Discrete Software Reliability Models: A Unified

Parameter Estimation Method", Proceedings of

theEighth IEEE International Symposium on High

Assurance Systems Engineering (HASE’04),2004.

pp: 219 - 228.

[11] C.Y.Huang, "Performance Analysis of Software

Reliability Growth Models with Testing Effort and

Change-Point", Journal of Systems and Software,

Vol. 76, pp: 181-194.2005.

[12] C.Y.Huang, S.Y.Kuo, M.R.Lyu, "An Assessment of

Testing-Effort Dependent Software Reliability

Growth Models", IEEE Transactions on Reliability,

Vol.56, No.2, pp: 198-211. 2007.

[13] Hsu, C.J., Huang, C.Y., Chen, T.Y., (2008), "Fast

Abstract: A Modified Genetic Algorithm for

Parameter Estimation of Software Reliability Growth

Models", 19th International Symposium on Software

Reliability Engineering, pp: 281-282.

[14] A. Yadav, R.A.Khan, "Critical Review on Software

Reliability Models", International Journal of Recent

Trends in Engineering, Vol.2, No.3,pp:114-

116.2009.

[15] R.SatyaPrasad, O.NagaRaju, R.R.LKantam,"SRGM

with Imperfect Debugging by Genetic Algorithms",

0

20

40

60

80

EXP(G-O) POW DSS
M-O

FA ACO Ex-ACO

9

I. J. of Software Engineering & Applications

(IJSEA), Vol.1, No.2, pp: 66-79. 2010.

[16] A. Gupta, D. Choudhary, S. Saxena, "Software

Reliability Estimation using Yamada Delayed S -

Shaped Model under Imperfect Debugging and Time

Lag", International J. of Computer Applications

(0975 – 8887) Vol.23, No.7, pp: 49-52. 2011.

[17] M.Anjum, M.A.Haque, N. Ahmad, "Analysis and

Ranking of Software Reliability Models Based on

Weighted Criteria Value", I.J. of Information

Technology and Computer Science, pp:1-14. 2013.

[18] P.SrinivasaRao, "Innovation of Reliability to

Improve Software Predictive Models", in

International Journal of Emerging Technology and

Advanced Engineering. Vol.4, Issue.5. 2014.

[19] A.Kaur, "Comparative Analysis of Reliability

Models–Based on Uncertainty Factors", In I. J. of

Advanced Research in Computer Science and

Software Engineering. Vol.5, Issue.2. 2015.

[20] M.Wayne, M.Modarres,"A Bayesian Model for

Complex System Reliability Growth Under Arbitrary

Corrective Actions", In IEEE Transaction on

Reliability,. Vol.64, Issue.1. 2015.

[21] P.K.Kapur, H. Pham, S.Anand, K.Yadav, " A

Unified Approach for Developing Software

Reliability Growth Models in the Presence of

Imperfect Debugging and Error Generation", IEEE

Transactions on Reliability, Vol. 60, No. 1,pp:331-

340. 2011.

[22] P. Nagar, B.Ankachan, "Application of Goel-

Okumoto Model in Software Reliability

Measurement",IJCA Special Issue on Issues and

Challenges in Networking, Intelligence and

Computing Technologies ICNICT, Published by

Foundation of Computer Science, NY, pp:1-3.2012.

[23] M.Razeef, M.Nazir, "Software Reliability Growth

Models: Overview and Applications", J. of Emerging

Trends in Computing and Information Sciences,

Vol.3, No.9, pp: 1309-1320. 2012.

[24] R.Lai, M.Garg, "A Detailed Study of NHPP

Software Reliability Models", Journal of Software,

Vol.7, No.6, pp: 1296-1306. 2012.

[25] Malaiya, Y.K.,(2003), "Software Reliability",

Encyclopedia of Library and Information Science,

Marcel Dekker, pp: 2688 - 2698.

[26] I.C.Ramos, "Statistical Procedures for Certification

of Software Systems", Netherlands Organization for

Scientific Research (NWO) project no. 617.023.047.

195p. 2009.

[27] O.Shatnawi, "Discrete Time NHPP Models for

Software Reliability Growth Phenomenon", In

International Arab Journal of Information

Technology, Vol. 6, No. 2, pp: 124-131. 2009

[28] M. Xie, Y.S. Dai, K.L. Poh, "Computing System

Reliability Models and Analysis", Kluwer

Academic/Plenum Publishers2004.P. 293.

[29] G.R .Neppala, R.S. Prasad, R.R.L.Kantam,

"Software Reliability Growth Model using Interval

Domain Data", I.J. of Computer Applications (0975

– 8887) , Vol.34, No.9, pp:5-8.2011.

[30] G.Wang, L.Guo, H.Dua, L. Liu, H. Wang, "A

Modified Firefly Algorithm for UCAV Path

Planning", I.J. of Hybrid Information Technology,

Vol.5, No.3, pp:123-144. 2012.

[31] X.S.Yang," Nature-Inspired Metaheuristic

Algorithms," 2nd Edition, Luniver Press, P.160.

2010.

[32] T.Apostolopoulos, A.Vlachos, "Application of the

Firefly Algorithm for Solving the Economic

Emissions Load Dispatch Problem", Hindawi

Publishing Corporation International Journal of

Combinatorics. Vol.2011, pp:1-23. 2010.

[33] J.Kwiecień, B.Filipowicz, "Firefly Algorithm in

Optimization of Queuing Systems", Bulletin of the

Polish Academy of Sciences Technical Sciences,

Vol.60, No.2, pp: 363-368. 2012.

[34] X.S.Yang, "Firefly Algorithms for Multimodal

Optimization", Stochastic Algorithms: Foundations

and Applications, SAGA, Lecture Notes in Computer

Sciences, Vol.5792, pp:169-178. 2009.

[35] N.Chai-ead, P.Aungkulanon, P.Luangpaiboon, "Bees

and Firefly Algorithms for Noisy Non-Linear

Optimisation Problems", Proceedings of the

International MultiConference of Engineers

andComputer Scientists, Vol.2, pp: 1449–1454.2011.

[36] S.K.Pal, C.S.Rai, A.P.Singh, "Comparative Study of

Firefly Algorithm and Particle Swarm Optimization

for Noisy Non- Linear Optimization Problems", I.J.

Intelligent Systems and Applications, pp:50-57.

2012.

[37] https://sw.thecsiac.com/databases/sled/swrel.php.

